

Binary delta encoding utility

[image: nala] [https://github.com/eerimoq/nala]

About

Binary delta encoding [https://en.wikipedia.org/wiki/Delta_encoding] in Python 3.6+ and C.

Based on http://www.daemonology.net/bsdiff/ and HDiffPatch [https://github.com/sisong/HDiffPatch], with
the following features:

	bsdiff, hdiffpatch and match-blocks algorithms.

	sequential [https://detools.readthedocs.io/en/latest/#id1], hdiffpatch or in-place [https://detools.readthedocs.io/en/latest/#id3] (resumable) patch types.

	BZ2, LZ4, LZMA, Zstandard [https://facebook.github.io/zstd], heatshrink [https://github.com/atomicobject/heatshrink] or CRLE compression.

	Sequential patches allow streaming.

	Maximum file size is 2 GB for the bsdiff algorithm. There is
practically no limit for the hdiffpatch and match-blocks algorithms.

	Incremental apply patch [https://github.com/eerimoq/detools/tree/master/c] implemented in C, suitable for memory
constrained embedded devices. Only the sequential patch type is
supported.

	SA-IS [https://sites.google.com/site/yuta256/sais] or divsufsort instead of qsufsort for bsdiff.

	Optional experimental data format aware algorithm for potentially
smaller patches. I don’t recommend anyone to use this functionality
as the gain is small in relation to memory usage and code
complexity!

There is a risk this functionality uses patent
https://patents.google.com/patent/EP1988455B1/en. Anyway, this
patent expires in August 2019 as I understand it.

Supported data formats:

	ARM Cortex-M4

	AArch64

Project homepage: https://github.com/eerimoq/detools

Documentation: http://detools.readthedocs.org/en/latest

Installation

pip install detools

Statistics

Patch sizes, memory usage (RSS) and elapsed times when creating a
patch from Python-3.7.3.tar (79M) to Python-3.8.1.tar (84M) for
various algorithm, patch type and compression combinations.

See tests/benchmark.sh [https://github.com/eerimoq/detools/tree/master/tests/benchmark.sh] for details on how the data was collected.

	Algorithm

	Patch type

	Compr.

	Patch size

	RSS

	Time

	bsdiff

	sequential

	lzma

	3,5M

	662M

	0:24.29

	bsdiff

	sequential

	none

	86M

	646M

	0:15.20

	hdiffpatch

	hdiffpatch

	lzma

	2,4M

	523M

	0:13.74

	hdiffpatch

	hdiffpatch

	none

	7,2M

	523M

	0:10.24

	match-blocks

	sequential

	lzma

	2,9M

	273M

	0:08.57

	match-blocks

	sequential

	none

	84M

	273M

	0:01.72

	match-blocks

	hdiffpatch

	lzma

	2,6M

	212M

	0:06.07

	match-blocks

	hdiffpatch

	none

	9,7M

	212M

	0:01.30

Same as above, but for MicroPython ESP8266 binary releases (from 604k
to 615k).

	Algorithm

	Patch type

	Compr.

	Patch size

	RSS

	Time

	bsdiff

	sequential

	lzma

	71K

	46M

	0:00.64

	bsdiff

	sequential

	none

	609K

	27M

	0:00.33

	hdiffpatch

	hdiffpatch

	lzma

	65K

	42M

	0:00.37

	hdiffpatch

	hdiffpatch

	none

	123K

	25M

	0:00.32

	match-blocks

	sequential

	lzma

	194K

	46M

	0:00.44

	match-blocks

	sequential

	none

	606K

	25M

	0:00.22

	match-blocks

	hdiffpatch

	lzma

	189K

	43M

	0:00.38

	match-blocks

	hdiffpatch

	none

	313K

	24M

	0:00.19

Example usage

Examples in C are found in c [https://github.com/eerimoq/detools/tree/master/c].

Command line tool

The create patch subcommand

Create a patch foo.patch from tests/files/foo/old to
tests/files/foo/new.

$ detools create_patch tests/files/foo/old tests/files/foo/new foo.patch
Successfully created 'foo.patch' in 0.01 seconds!
$ ls -l foo.patch
-rw-rw-r-- 1 erik erik 127 feb 2 10:35 foo.patch

Create the same patch as above, but without compression.

$ detools create_patch --compression none \
 tests/files/foo/old tests/files/foo/new foo-no-compression.patch
Successfully created 'foo-no-compression.patch' in 0 seconds!
$ ls -l foo-no-compression.patch
-rw-rw-r-- 1 erik erik 2792 feb 2 10:35 foo-no-compression.patch

Create a hdiffpatch patch foo-hdiffpatch.patch.

$ detools create_patch --algorithm hdiffpatch --patch-type hdiffpatch \
 tests/files/foo/old tests/files/foo/new foo-hdiffpatch.patch
Successfully created patch 'foo-hdiffpatch.patch' in 0.01 seconds!
$ ls -l foo-hdiffpatch.patch
-rw-rw-r-- 1 erik erik 146 feb 2 10:37 foo-hdiffpatch.patch

Lower memory usage with --algorithm match-blocks algorithm. Mainly
useful for big files. Creates slightly bigger patches than bsdiff
and hdiffpatch.

$ detools create_patch --algorithm match-blocks \
 tests/files/foo/old tests/files/foo/new foo-hdiffpatch-64.patch
Successfully created patch 'foo-hdiffpatch-64.patch' in 0.01 seconds!
$ ls -l foo-hdiffpatch-64.patch
-rw-rw-r-- 1 erik erik 404 feb 8 11:03 foo-hdiffpatch-64.patch

Non-sequential but smaller patch with --patch-type hdiffpatch.

$ detools create_patch \
 --algorithm match-blocks --patch-type hdiffpatch \
 tests/files/foo/old tests/files/foo/new foo-hdiffpatch-sequential.patch
Successfully created 'foo-hdiffpatch-sequential.patch' in 0.01 seconds!
$ ls -l foo-hdiffpatch-sequential.patch
-rw-rw-r-- 1 erik erik 389 feb 8 11:05 foo-hdiffpatch-sequential.patch

The create in-place patch subcommand

Create an in-place patch foo-in-place.patch.

$ detools create_patch_in_place --memory-size 3000 --segment-size 500 \
 tests/files/foo/old tests/files/foo/new foo-in-place.patch
Successfully created 'foo-in-place.patch' in 0.01 seconds!
$ ls -l foo-in-place.patch
-rw-rw-r-- 1 erik erik 672 feb 2 10:36 foo-in-place.patch

The create bsdiff patch subcommand

Create a bsdiff patch foo-bsdiff.patch, compatible with the
original bsdiff program.

$ detools create_patch_bsdiff \
 tests/files/foo/old tests/files/foo/new foo-bsdiff.patch
Successfully created 'foo-bsdiff.patch' in 0 seconds!
$ ls -l foo-bsdiff.patch
-rw-rw-r-- 1 erik erik 261 feb 2 10:36 foo-bsdiff.patch

The apply patch subcommand

Apply the patch foo.patch to tests/files/foo/old to create
foo.new.

$ detools apply_patch tests/files/foo/old foo.patch foo.new
Successfully created 'foo.new' in 0 seconds!
$ ls -l foo.new
-rw-rw-r-- 1 erik erik 2780 feb 2 10:38 foo.new

The in-place apply patch subcommand

Apply the in-place patch foo-in-place.patch to foo.mem.

$ cp tests/files/foo/in-place-3000-500.mem foo.mem
$ detools apply_patch_in_place foo.mem foo-in-place.patch
Successfully created 'foo.mem' in 0 seconds!
$ ls -l foo.mem
-rw-rw-r-- 1 erik erik 3000 feb 2 10:40 foo.mem

The bsdiff apply patch subcommand

Apply the patch foo-bsdiff.patch to tests/files/foo/old to
create foo.new.

$ detools apply_patch_bsdiff tests/files/foo/old foo-bsdiff.patch foo.new
Successfully created 'foo.new' in 0 seconds!
$ ls -l foo.new
-rw-rw-r-- 1 erik erik 2780 feb 2 10:41 foo.new

The patch info subcommand

Print information about the patch foo.patch.

$ detools patch_info foo.patch
Type: sequential
Patch size: 127 bytes
To size: 2.71 KiB
Patch/to ratio: 4.6 % (lower is better)
Diff/extra ratio: 9828.6 % (higher is better)
Size/data ratio: 0.3 % (lower is better)
Compression: lzma

Number of diffs: 2
Total diff size: 2.69 KiB
Average diff size: 1.34 KiB
Median diff size: 1.34 KiB

Number of extras: 2
Total extra size: 28 bytes
Average extra size: 14 bytes
Median extra size: 14 bytes

Contributing

	Fork the repository.

	Install prerequisites.

pip install -r requirements.txt

	Implement the new feature or bug fix.

	Implement test case(s) to ensure that future changes do not break
legacy.

	Run the tests.

make test

	Create a pull request.

Patch types

Sequential

A sequential patch uses two memory regions or files. One contains the
from-data and the to-data is written to the other. The patch is
accesses sequentially from the beginning to the end when applying the
patch.

$ detools create_patch tests/files/foo.old tests/files/foo.new foo.patch

Patch layout:

	header

	diff 1

	extra 1

	adj. 1

	diff 2

	extra 2

	adj. 2

	…

The first part of the header is not compressed. The rest of the patch
is compressed.

HDiffPatch

Patches of this type are slightly smaller than sequential patches.

$ detools create_patch --patch-type hdiffpatch \
 tests/files/foo.old tests/files/foo.new foo.patch

Patch layout:

	header

	covers

	RLE diff control

	RLE diff code

	extra

The header is not compressed. The other four parts are compressed
separately.

In-place

The in-place patch type is designed to update an application in
place. It is useful when flash operations are faster than the external
interface transfer speed.

Use create_patch_in_place to create an in-place patch. The to
options --memory-size and --segment-size are required, while
--minimum-shift-size is optional.

$ detools create_patch --type in-place --memory-size 131072 --segment-size 32768 \
 tests/files/foo.old tests/files/foo.new foo.patch

Here is an example of an in-place application update from version 1 to
version 2. The two applications are represented by the character
sequences below for clarity.

Version 1: 0123456789abcdefghijklmnopqr
Version 2: ABCDEFGHIJKLMNOPQRSTUVWXYZstuvwxyz

	Before the update application version 1 is found in memory segments
0 to 3.

 0 1 2 3 4 5
+-------+-------+-------+-------+-------+-------+
|0123456789abcdefghijklmnopqr| |
+-------+-------+-------+-------+-------+-------+

	The update starts by moving the application two segments to the
right to make room for the new version.

 0 1 2 3 4 5
+-------+-------+-------+-------+-------+-------+
| |0123456789abcdefghijklmnopqr| |
+-------+-------+-------+-------+-------+-------+

	The first part of the patch is received and combined with
application version 1. The combined data is written to segment 0.

 0 1 2 3 4 5
+-------+-------+-------+-------+-------+-------+
|ABCDEFG| |0123456789abcdefghijklmnopqr| |
+-------+-------+-------+-------+-------+-------+

	Same as the previous step, but the combined data is written to
segment 1.

 0 1 2 3 4 5
+-------+-------+-------+-------+-------+-------+
|ABCDEFGHIJKLMNO|0123456789abcdefghijklmnopqr| |
+-------+-------+-------+-------+-------+-------+

	Segment 2 is erased to make room for the next part of the patch.

 0 1 2 3 4 5
+-------+-------+-------+-------+-------+-------+
|ABCDEFGHIJKLMNO| |89abcdefghijklmnopqr| |
+-------+-------+-------+-------+-------+-------+

	Combined data written to segment 2.

 0 1 2 3 4 5
+-------+-------+-------+-------+-------+-------+
|ABCDEFGHIJKLMNOPQRSTUVW|89abcdefghijklmnopqr| |
+-------+-------+-------+-------+-------+-------+

	Segment 3 is erased.

 0 1 2 3 4 5
+-------+-------+-------+-------+-------+-------+
|ABCDEFGHIJKLMNOPQRSTUVW| |ghijklmnopqr| |
+-------+-------+-------+-------+-------+-------+

	Combined data written to segment 3.

 0 1 2 3 4 5
+-------+-------+-------+-------+-------+-------+
|ABCDEFGHIJKLMNOPQRSTUVWXYZstuvw|ghijklmnopqr| |
+-------+-------+-------+-------+-------+-------+

	Segment 4 is erased.

 0 1 2 3 4 5
+-------+-------+-------+-------+-------+-------+
|ABCDEFGHIJKLMNOPQRSTUVWXYZstuvw| |opqr| |
+-------+-------+-------+-------+-------+-------+

	Combined data written to segment 4.

 0 1 2 3 4 5
+-------+-------+-------+-------+-------+-------+
|ABCDEFGHIJKLMNOPQRSTUVWXYZstuvwxyz| |opqr| |
+-------+-------+-------+-------+-------+-------+

	Optionally, segment 5 is erased.

 0 1 2 3 4 5
+-------+-------+-------+-------+-------+-------+
|ABCDEFGHIJKLMNOPQRSTUVWXYZstuvwxyz| |
+-------+-------+-------+-------+-------+-------+

	Update to application version 2 complete!

An interrupted in-place update can be resumed by introducing a step
state, persistentely stored in a separate memory region. Also store
the patch header persistentely. Reject any other patch until the
currently active patch has been successfully applied.

 0 1 2 3 4 5
+-------+-------+-------+-------+-------+-------+
|0123456789abcdefghijklmnopqr| | Step: 0
+-------+-------+-------+-------+-------+-------+
|0123456789abcdefghijklmnopqr| |opqr| | Step: 1
+-------+-------+-------+-------+-------+-------+
|0123456789abcdefghijklmnopqr| |ghijklmnopqr| | Step: 2
+-------+-------+-------+-------+-------+-------+
|0123456789abcdefghijklm|89abcdefghijklmnopqr| | Step: 3
+-------+-------+-------+-------+-------+-------+
|0123456789abcde|0123456789abcdefghijklmnopqr| | Step: 4
+-------+-------+-------+-------+-------+-------+
|ABCDEFG789abcde|0123456789abcdefghijklmnopqr| | Step: 5
+-------+-------+-------+-------+-------+-------+
|ABCDEFGHIJKLMNO|0123456789abcdefghijklmnopqr| | Step: 6
+-------+-------+-------+-------+-------+-------+
|ABCDEFGHIJKLMNOPQRSTUVW|89abcdefghijklmnopqr| | Step: 7
+-------+-------+-------+-------+-------+-------+
|ABCDEFGHIJKLMNOPQRSTUVWXYZstuvw|ghijklmnopqr| | Step: 8
+-------+-------+-------+-------+-------+-------+
|ABCDEFGHIJKLMNOPQRSTUVWXYZstuvwxyz| |opqr| | Step: 9
+-------+-------+-------+-------+-------+-------+

Functions and classes

	
detools.create_patch(ffrom, fto, fpatch, compression='lzma', patch_type='sequential', algorithm='bsdiff', suffix_array_algorithm='divsufsort', memory_size=None, segment_size=None, minimum_shift_size=None, data_format=None, from_data_offset_begin=0, from_data_offset_end=0, from_data_begin=0, from_data_end=0, from_code_begin=0, from_code_end=0, to_data_offset_begin=0, to_data_offset_end=0, to_data_begin=0, to_data_end=0, to_code_begin=0, to_code_end=0, match_score=6, match_block_size=64, use_mmap=True, heatshrink_window_sz2=8, heatshrink_lookahead_sz2=7)

	Create a patch from ffrom to fto and write it to fpatch. All
three arguments are file-like objects.

compression must be 'bz2', 'crle', 'lzma',
'zstd', 'lz4' or 'none'.

patch_type must be 'sequential', 'in-place' or
'bsdiff'.

algorithm must be 'sequential' or 'hdiffpatch'.

suffix_array_algorithm must be 'sais' or 'divsufsort'.

memory_size, segment_size and minimum_shift_size are used
when creating an in-place patch.

match_score is used by the hdiffpatch algorithm. Default
6. Recommended 0-4 for binary files and 4-9 for text files.

match_block_size is used by the match-blocks algorithm. Default
64. Less memory is needed to create the patch, but the patch will
be bigger.

>>> ffrom = open('foo.old', 'rb')
>>> fto = open('foo.new', 'rb')
>>> fpatch = open('foo.patch', 'wb')
>>> create_patch(ffrom, fto, fpatch)

	
detools.apply_patch(ffrom, fpatch, fto)

	Apply given sequential or hdiffpatch patch fpatch to ffrom to
create fto. Returns the size of the created to-data.

All arguments are file-like objects.

>>> ffrom = open('foo.mem', 'rb')
>>> fpatch = open('foo.patch', 'rb')
>>> fto = open('foo.new', 'wb')
>>> apply_patch(ffrom, fpatch, fto)
2780

	
detools.apply_patch_in_place(fmem, fpatch)

	Apply given in-place patch fpatch to fmem. Returns the size of
the created to-data.

Both arguments are file-like objects.

>>> fmem = open('foo.mem', 'r+b')
>>> fpatch = open('foo-in-place.patch', 'rb')
>>> apply_patch_in_place(fmem, fpatch)
2780

	
detools.patch_info(fpatch, fsize=None)

	Get patch information from given file-like patch object fpatch.

	
detools.create_patch_filenames(fromfile, tofile, patchfile, compression='lzma', patch_type='sequential', algorithm='bsdiff', suffix_array_algorithm='divsufsort', memory_size=None, segment_size=None, minimum_shift_size=None, data_format=None, from_data_offset_begin=0, from_data_offset_end=0, from_data_begin=0, from_data_end=0, from_code_begin=0, from_code_end=0, to_data_offset_begin=0, to_data_offset_end=0, to_data_begin=0, to_data_end=0, to_code_begin=0, to_code_end=0, match_score=6, match_block_size=64, use_mmap=True, heatshrink_window_sz2=8, heatshrink_lookahead_sz2=7)

	Same as create_patch(), but with filenames instead
of file-like objects.

>>> create_patch_filenames('foo.old', 'foo.new', 'foo.patch')

	
detools.apply_patch_filenames(fromfile, patchfile, tofile)

	Same as apply_patch(), but with filenames instead
of file-like objects.

>>> apply_patch_filenames('foo.old', 'foo.patch', 'foo.new')
2780

	
detools.apply_patch_in_place_filenames(memfile, patchfile)

	Same as apply_patch_in_place(), but with filenames
instead of file-like objects.

>>> apply_patch_in_place_filenames('foo.mem', 'foo-in-place.patch')
2780

	
detools.patch_info_filename(patchfile, fsize=None)

	Same as patch_info(), but with a filename instead
of a file-like object.

Index

 A
 | C
 | P

A

 	
 	apply_patch() (in module detools)

 	apply_patch_filenames() (in module detools)

 	
 	apply_patch_in_place() (in module detools)

 	apply_patch_in_place_filenames() (in module detools)

C

 	
 	create_patch() (in module detools)

 	
 	create_patch_filenames() (in module detools)

P

 	
 	patch_info() (in module detools)

 	
 	patch_info_filename() (in module detools)

 nav.xhtml

 Table of Contents

 		
 Binary delta encoding utility

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

