
detools Documentation
Release 0.53.0

Erik Moqvist

Mar 10, 2023

Contents

1 About 3

2 Installation 5

3 Statistics 7

4 Example usage 9
4.1 Command line tool . 9

5 Contributing 13

6 Patch types 15
6.1 Sequential . 15
6.2 HDiffPatch . 15
6.3 In-place . 16

7 Functions and classes 19

Index 21

i

ii

detools Documentation, Release 0.53.0

Contents 1

https://github.com/eerimoq/nala

detools Documentation, Release 0.53.0

2 Contents

CHAPTER 1

About

Binary delta encoding in Python 3.6+ and C.

Based on http://www.daemonology.net/bsdiff/ and HDiffPatch, with the following features:

• bsdiff, hdiffpatch and match-blocks algorithms.

• sequential, hdiffpatch or in-place (resumable) patch types.

• BZ2, LZ4, LZMA, Zstandard, heatshrink or CRLE compression.

• Sequential patches allow streaming.

• Maximum file size is 2 GB for the bsdiff algorithm. There is practically no limit for the hdiffpatch and match-
blocks algorithms.

• Incremental apply patch implemented in C, suitable for memory constrained embedded devices. Only the se-
quential patch type is supported.

• SA-IS or divsufsort instead of qsufsort for bsdiff.

• Optional experimental data format aware algorithm for potentially smaller patches. I don’t recommend anyone
to use this functionality as the gain is small in relation to memory usage and code complexity!

There is a risk this functionality uses patent https://patents.google.com/patent/EP1988455B1/en. Anyway, this
patent expires in August 2019 as I understand it.

Supported data formats:

– ARM Cortex-M4

– AArch64

Project homepage: https://github.com/eerimoq/detools

Documentation: http://detools.readthedocs.org/en/latest

3

https://en.wikipedia.org/wiki/Delta_encoding
http://www.daemonology.net/bsdiff/
https://github.com/sisong/HDiffPatch
https://detools.readthedocs.io/en/latest/#id1
https://detools.readthedocs.io/en/latest/#id3
https://facebook.github.io/zstd
https://github.com/atomicobject/heatshrink
https://github.com/eerimoq/detools/tree/master/c
https://sites.google.com/site/yuta256/sais
https://patents.google.com/patent/EP1988455B1/en
https://github.com/eerimoq/detools
http://detools.readthedocs.org/en/latest

detools Documentation, Release 0.53.0

4 Chapter 1. About

CHAPTER 2

Installation

pip install detools

5

detools Documentation, Release 0.53.0

6 Chapter 2. Installation

CHAPTER 3

Statistics

Patch sizes, memory usage (RSS) and elapsed times when creating a patch from Python-3.7.3.tar (79M) to Python-
3.8.1.tar (84M) for various algorithm, patch type and compression combinations.

See tests/benchmark.sh for details on how the data was collected.

Algorithm Patch type Compr. Patch size RSS Time
bsdiff sequential lzma 3,5M 662M 0:24.29
bsdiff sequential none 86M 646M 0:15.20
hdiffpatch hdiffpatch lzma 2,4M 523M 0:13.74
hdiffpatch hdiffpatch none 7,2M 523M 0:10.24
match-blocks sequential lzma 2,9M 273M 0:08.57
match-blocks sequential none 84M 273M 0:01.72
match-blocks hdiffpatch lzma 2,6M 212M 0:06.07
match-blocks hdiffpatch none 9,7M 212M 0:01.30

Same as above, but for MicroPython ESP8266 binary releases (from 604k to 615k).

Algorithm Patch type Compr. Patch size RSS Time
bsdiff sequential lzma 71K 46M 0:00.64
bsdiff sequential none 609K 27M 0:00.33
hdiffpatch hdiffpatch lzma 65K 42M 0:00.37
hdiffpatch hdiffpatch none 123K 25M 0:00.32
match-blocks sequential lzma 194K 46M 0:00.44
match-blocks sequential none 606K 25M 0:00.22
match-blocks hdiffpatch lzma 189K 43M 0:00.38
match-blocks hdiffpatch none 313K 24M 0:00.19

7

https://github.com/eerimoq/detools/tree/master/tests/benchmark.sh

detools Documentation, Release 0.53.0

8 Chapter 3. Statistics

CHAPTER 4

Example usage

Examples in C are found in c.

4.1 Command line tool

4.1.1 The create patch subcommand

Create a patch foo.patch from tests/files/foo/old to tests/files/foo/new.

$ detools create_patch tests/files/foo/old tests/files/foo/new foo.patch
Successfully created 'foo.patch' in 0.01 seconds!
$ ls -l foo.patch
-rw-rw-r-- 1 erik erik 127 feb 2 10:35 foo.patch

Create the same patch as above, but without compression.

$ detools create_patch --compression none \
tests/files/foo/old tests/files/foo/new foo-no-compression.patch

Successfully created 'foo-no-compression.patch' in 0 seconds!
$ ls -l foo-no-compression.patch
-rw-rw-r-- 1 erik erik 2792 feb 2 10:35 foo-no-compression.patch

Create a hdiffpatch patch foo-hdiffpatch.patch.

$ detools create_patch --algorithm hdiffpatch --patch-type hdiffpatch \
tests/files/foo/old tests/files/foo/new foo-hdiffpatch.patch

Successfully created patch 'foo-hdiffpatch.patch' in 0.01 seconds!
$ ls -l foo-hdiffpatch.patch
-rw-rw-r-- 1 erik erik 146 feb 2 10:37 foo-hdiffpatch.patch

Lower memory usage with --algorithm match-blocks algorithm. Mainly useful for big files. Creates slightly
bigger patches than bsdiff and hdiffpatch.

9

https://github.com/eerimoq/detools/tree/master/c

detools Documentation, Release 0.53.0

$ detools create_patch --algorithm match-blocks \
tests/files/foo/old tests/files/foo/new foo-hdiffpatch-64.patch

Successfully created patch 'foo-hdiffpatch-64.patch' in 0.01 seconds!
$ ls -l foo-hdiffpatch-64.patch
-rw-rw-r-- 1 erik erik 404 feb 8 11:03 foo-hdiffpatch-64.patch

Non-sequential but smaller patch with --patch-type hdiffpatch.

$ detools create_patch \
--algorithm match-blocks --patch-type hdiffpatch \
tests/files/foo/old tests/files/foo/new foo-hdiffpatch-sequential.patch

Successfully created 'foo-hdiffpatch-sequential.patch' in 0.01 seconds!
$ ls -l foo-hdiffpatch-sequential.patch
-rw-rw-r-- 1 erik erik 389 feb 8 11:05 foo-hdiffpatch-sequential.patch

4.1.2 The create in-place patch subcommand

Create an in-place patch foo-in-place.patch.

$ detools create_patch_in_place --memory-size 3000 --segment-size 500 \
tests/files/foo/old tests/files/foo/new foo-in-place.patch

Successfully created 'foo-in-place.patch' in 0.01 seconds!
$ ls -l foo-in-place.patch
-rw-rw-r-- 1 erik erik 672 feb 2 10:36 foo-in-place.patch

4.1.3 The create bsdiff patch subcommand

Create a bsdiff patch foo-bsdiff.patch, compatible with the original bsdiff program.

$ detools create_patch_bsdiff \
tests/files/foo/old tests/files/foo/new foo-bsdiff.patch

Successfully created 'foo-bsdiff.patch' in 0 seconds!
$ ls -l foo-bsdiff.patch
-rw-rw-r-- 1 erik erik 261 feb 2 10:36 foo-bsdiff.patch

4.1.4 The apply patch subcommand

Apply the patch foo.patch to tests/files/foo/old to create foo.new.

$ detools apply_patch tests/files/foo/old foo.patch foo.new
Successfully created 'foo.new' in 0 seconds!
$ ls -l foo.new
-rw-rw-r-- 1 erik erik 2780 feb 2 10:38 foo.new

4.1.5 The in-place apply patch subcommand

Apply the in-place patch foo-in-place.patch to foo.mem.

10 Chapter 4. Example usage

detools Documentation, Release 0.53.0

$ cp tests/files/foo/in-place-3000-500.mem foo.mem
$ detools apply_patch_in_place foo.mem foo-in-place.patch
Successfully created 'foo.mem' in 0 seconds!
$ ls -l foo.mem
-rw-rw-r-- 1 erik erik 3000 feb 2 10:40 foo.mem

4.1.6 The bsdiff apply patch subcommand

Apply the patch foo-bsdiff.patch to tests/files/foo/old to create foo.new.

$ detools apply_patch_bsdiff tests/files/foo/old foo-bsdiff.patch foo.new
Successfully created 'foo.new' in 0 seconds!
$ ls -l foo.new
-rw-rw-r-- 1 erik erik 2780 feb 2 10:41 foo.new

4.1.7 The patch info subcommand

Print information about the patch foo.patch.

$ detools patch_info foo.patch
Type: sequential
Patch size: 127 bytes
To size: 2.71 KiB
Patch/to ratio: 4.6 % (lower is better)
Diff/extra ratio: 9828.6 % (higher is better)
Size/data ratio: 0.3 % (lower is better)
Compression: lzma

Number of diffs: 2
Total diff size: 2.69 KiB
Average diff size: 1.34 KiB
Median diff size: 1.34 KiB

Number of extras: 2
Total extra size: 28 bytes
Average extra size: 14 bytes
Median extra size: 14 bytes

4.1. Command line tool 11

detools Documentation, Release 0.53.0

12 Chapter 4. Example usage

CHAPTER 5

Contributing

1. Fork the repository.

2. Install prerequisites.

pip install -r requirements.txt

3. Implement the new feature or bug fix.

4. Implement test case(s) to ensure that future changes do not break legacy.

5. Run the tests.

make test

6. Create a pull request.

13

detools Documentation, Release 0.53.0

14 Chapter 5. Contributing

CHAPTER 6

Patch types

6.1 Sequential

A sequential patch uses two memory regions or files. One contains the from-data and the to-data is written to the other.
The patch is accesses sequentially from the beginning to the end when applying the patch.

$ detools create_patch tests/files/foo.old tests/files/foo.new foo.patch

Patch layout:

header diff 1 extra 1 adj. 1 diff 2 extra 2 adj. 2 . . .

The first part of the header is not compressed. The rest of the patch is compressed.

6.2 HDiffPatch

Patches of this type are slightly smaller than sequential patches.

$ detools create_patch --patch-type hdiffpatch \
tests/files/foo.old tests/files/foo.new foo.patch

Patch layout:

header covers RLE diff control RLE diff code extra

The header is not compressed. The other four parts are compressed separately.

15

detools Documentation, Release 0.53.0

6.3 In-place

The in-place patch type is designed to update an application in place. It is useful when flash operations are faster than
the external interface transfer speed.

Use create_patch_in_place to create an in-place patch. The to options --memory-size and
--segment-size are required, while --minimum-shift-size is optional.

$ detools create_patch --type in-place --memory-size 131072 --segment-size 32768 \
tests/files/foo.old tests/files/foo.new foo.patch

Here is an example of an in-place application update from version 1 to version 2. The two applications are represented
by the character sequences below for clarity.

Version 1: 0123456789abcdefghijklmnopqr
Version 2: ABCDEFGHIJKLMNOPQRSTUVWXYZstuvwxyz

1. Before the update application version 1 is found in memory segments 0 to 3.

0 1 2 3 4 5
+-------+-------+-------+-------+-------+-------+
|0123456789abcdefghijklmnopqr| |
+-------+-------+-------+-------+-------+-------+

2. The update starts by moving the application two segments to the right to make room for the new version.

0 1 2 3 4 5
+-------+-------+-------+-------+-------+-------+
| |0123456789abcdefghijklmnopqr| |
+-------+-------+-------+-------+-------+-------+

3. The first part of the patch is received and combined with application version 1. The combined data is written to
segment 0.

0 1 2 3 4 5
+-------+-------+-------+-------+-------+-------+
|ABCDEFG| |0123456789abcdefghijklmnopqr| |
+-------+-------+-------+-------+-------+-------+

4. Same as the previous step, but the combined data is written to segment 1.

0 1 2 3 4 5
+-------+-------+-------+-------+-------+-------+
|ABCDEFGHIJKLMNO|0123456789abcdefghijklmnopqr| |
+-------+-------+-------+-------+-------+-------+

5. Segment 2 is erased to make room for the next part of the patch.

0 1 2 3 4 5
+-------+-------+-------+-------+-------+-------+
|ABCDEFGHIJKLMNO| |89abcdefghijklmnopqr| |
+-------+-------+-------+-------+-------+-------+

6. Combined data written to segment 2.

0 1 2 3 4 5
+-------+-------+-------+-------+-------+-------+

(continues on next page)

16 Chapter 6. Patch types

detools Documentation, Release 0.53.0

(continued from previous page)

|ABCDEFGHIJKLMNOPQRSTUVW|89abcdefghijklmnopqr| |
+-------+-------+-------+-------+-------+-------+

7. Segment 3 is erased.

0 1 2 3 4 5
+-------+-------+-------+-------+-------+-------+
|ABCDEFGHIJKLMNOPQRSTUVW| |ghijklmnopqr| |
+-------+-------+-------+-------+-------+-------+

8. Combined data written to segment 3.

0 1 2 3 4 5
+-------+-------+-------+-------+-------+-------+
|ABCDEFGHIJKLMNOPQRSTUVWXYZstuvw|ghijklmnopqr| |
+-------+-------+-------+-------+-------+-------+

9. Segment 4 is erased.

0 1 2 3 4 5
+-------+-------+-------+-------+-------+-------+
|ABCDEFGHIJKLMNOPQRSTUVWXYZstuvw| |opqr| |
+-------+-------+-------+-------+-------+-------+

10. Combined data written to segment 4.

0 1 2 3 4 5
+-------+-------+-------+-------+-------+-------+
|ABCDEFGHIJKLMNOPQRSTUVWXYZstuvwxyz| |opqr| |
+-------+-------+-------+-------+-------+-------+

11. Optionally, segment 5 is erased.

0 1 2 3 4 5
+-------+-------+-------+-------+-------+-------+
|ABCDEFGHIJKLMNOPQRSTUVWXYZstuvwxyz| |
+-------+-------+-------+-------+-------+-------+

12. Update to application version 2 complete!

An interrupted in-place update can be resumed by introducing a step state, persistentely stored in a separate memory
region. Also store the patch header persistentely. Reject any other patch until the currently active patch has been
successfully applied.

0 1 2 3 4 5
+-------+-------+-------+-------+-------+-------+
|0123456789abcdefghijklmnopqr| | Step: 0
+-------+-------+-------+-------+-------+-------+
|0123456789abcdefghijklmnopqr| |opqr| | Step: 1
+-------+-------+-------+-------+-------+-------+
|0123456789abcdefghijklmnopqr| |ghijklmnopqr| | Step: 2
+-------+-------+-------+-------+-------+-------+
|0123456789abcdefghijklm|89abcdefghijklmnopqr| | Step: 3
+-------+-------+-------+-------+-------+-------+
|0123456789abcde|0123456789abcdefghijklmnopqr| | Step: 4
+-------+-------+-------+-------+-------+-------+

(continues on next page)

6.3. In-place 17

detools Documentation, Release 0.53.0

(continued from previous page)

|ABCDEFG789abcde|0123456789abcdefghijklmnopqr| | Step: 5
+-------+-------+-------+-------+-------+-------+
|ABCDEFGHIJKLMNO|0123456789abcdefghijklmnopqr| | Step: 6
+-------+-------+-------+-------+-------+-------+
|ABCDEFGHIJKLMNOPQRSTUVW|89abcdefghijklmnopqr| | Step: 7
+-------+-------+-------+-------+-------+-------+
|ABCDEFGHIJKLMNOPQRSTUVWXYZstuvw|ghijklmnopqr| | Step: 8
+-------+-------+-------+-------+-------+-------+
|ABCDEFGHIJKLMNOPQRSTUVWXYZstuvwxyz| |opqr| | Step: 9
+-------+-------+-------+-------+-------+-------+

18 Chapter 6. Patch types

CHAPTER 7

Functions and classes

detools.create_patch(ffrom, fto, fpatch, compression=’lzma’, patch_type=’sequential’, algo-
rithm=’bsdiff’, suffix_array_algorithm=’divsufsort’, memory_size=None,
segment_size=None, minimum_shift_size=None, data_format=None,
from_data_offset_begin=0, from_data_offset_end=0, from_data_begin=0,
from_data_end=0, from_code_begin=0, from_code_end=0,
to_data_offset_begin=0, to_data_offset_end=0, to_data_begin=0,
to_data_end=0, to_code_begin=0, to_code_end=0, match_score=6,
match_block_size=64, use_mmap=True, heatshrink_window_sz2=8, heat-
shrink_lookahead_sz2=7)

Create a patch from ffrom to fto and write it to fpatch. All three arguments are file-like objects.

compression must be 'bz2', 'crle', 'lzma', 'zstd', 'lz4' or 'none'.

patch_type must be 'sequential', 'in-place' or 'bsdiff'.

algorithm must be 'sequential' or 'hdiffpatch'.

suffix_array_algorithm must be 'sais' or 'divsufsort'.

memory_size, segment_size and minimum_shift_size are used when creating an in-place patch.

match_score is used by the hdiffpatch algorithm. Default 6. Recommended 0-4 for binary files and 4-9 for text
files.

match_block_size is used by the match-blocks algorithm. Default 64. Less memory is needed to create the
patch, but the patch will be bigger.

>>> ffrom = open('foo.old', 'rb')
>>> fto = open('foo.new', 'rb')
>>> fpatch = open('foo.patch', 'wb')
>>> create_patch(ffrom, fto, fpatch)

detools.apply_patch(ffrom, fpatch, fto)
Apply given sequential or hdiffpatch patch fpatch to ffrom to create fto. Returns the size of the created to-data.

All arguments are file-like objects.

19

detools Documentation, Release 0.53.0

>>> ffrom = open('foo.mem', 'rb')
>>> fpatch = open('foo.patch', 'rb')
>>> fto = open('foo.new', 'wb')
>>> apply_patch(ffrom, fpatch, fto)
2780

detools.apply_patch_in_place(fmem, fpatch)
Apply given in-place patch fpatch to fmem. Returns the size of the created to-data.

Both arguments are file-like objects.

>>> fmem = open('foo.mem', 'r+b')
>>> fpatch = open('foo-in-place.patch', 'rb')
>>> apply_patch_in_place(fmem, fpatch)
2780

detools.patch_info(fpatch, fsize=None)
Get patch information from given file-like patch object fpatch.

detools.create_patch_filenames(fromfile, tofile, patchfile, compression=’lzma’,
patch_type=’sequential’, algorithm=’bsdiff’, suf-
fix_array_algorithm=’divsufsort’, memory_size=None,
segment_size=None, minimum_shift_size=None,
data_format=None, from_data_offset_begin=0,
from_data_offset_end=0, from_data_begin=0,
from_data_end=0, from_code_begin=0, from_code_end=0,
to_data_offset_begin=0, to_data_offset_end=0,
to_data_begin=0, to_data_end=0, to_code_begin=0,
to_code_end=0, match_score=6, match_block_size=64,
use_mmap=True, heatshrink_window_sz2=8, heat-
shrink_lookahead_sz2=7)

Same as create_patch(), but with filenames instead of file-like objects.

>>> create_patch_filenames('foo.old', 'foo.new', 'foo.patch')

detools.apply_patch_filenames(fromfile, patchfile, tofile)
Same as apply_patch(), but with filenames instead of file-like objects.

>>> apply_patch_filenames('foo.old', 'foo.patch', 'foo.new')
2780

detools.apply_patch_in_place_filenames(memfile, patchfile)
Same as apply_patch_in_place(), but with filenames instead of file-like objects.

>>> apply_patch_in_place_filenames('foo.mem', 'foo-in-place.patch')
2780

detools.patch_info_filename(patchfile, fsize=None)
Same as patch_info(), but with a filename instead of a file-like object.

20 Chapter 7. Functions and classes

Index

A
apply_patch() (in module detools), 19
apply_patch_filenames() (in module detools),

20
apply_patch_in_place() (in module detools), 20
apply_patch_in_place_filenames() (in mod-

ule detools), 20

C
create_patch() (in module detools), 19
create_patch_filenames() (in module detools),

20

P
patch_info() (in module detools), 20
patch_info_filename() (in module detools), 20

21

	About
	Installation
	Statistics
	Example usage
	Command line tool

	Contributing
	Patch types
	Sequential
	HDiffPatch
	In-place

	Functions and classes
	Index

